Search results for "Incident beam"
showing 4 items of 4 documents
Effects of natural radiation damage on back-scattered electron images of single crystals of minerals
2006
Generally, it has been assumed that signal intensity variations in back-scattered electron (BSE) images of minerals are mainly controlled by chemical heterogeneity. This is especially true for images of single crystals, where effects of different crystal orientations with respect to the incident beam on the observed BSE are excluded. In contrast, we show that local variations of the structural state within single-crystals (i.e., degree of lattice order or lattice imperfectness) may also have dramatic effects on the back-scattering of electrons. As an example, we present BSE images of single-crystals of natural zircon, ZrSiO 4 , whose intensity patterns are predominantly controlled by struct…
Self-pumped phase conjugation in a BaTiO3:Rh waveguide
2002
We present a self-pumped phase conjugator originated by self-bending of the incident beam at λ = 515 nm in a BaTiO3:Rh waveguide elaborated by three successive He+ ion implantations. Phase conjugate reflectivity reached is 28 %.
Electromagnetic transition rates in theN=80nucleus58138Ce
2013
The half-life of the Iπ=6+ yrast state at Ex=2294 keV in 138Ce has been measured as T1/2=880(19) ps using the fast-timing γ-ray coincidence method with a mixed LaBr3(Ce)-HPGe array. The excited states in 138Ce have been populated by the 130Te(12C,4n) fusion-evaporation reaction at an incident beam energy of 56 MeV. The extracted B(E2;61+→41+)=0.101(24) W.u. value is compared with the predictions of truncated basis shell model calculations and with the systematics of the region. This shows an anomalous behavior compared to the neighboring isotonic and isotopic chains. Half-lives for the yrast 5-, 11+ and 14+ states in 138Ce have also been determined in this work.
Studies on Instabilities and Patterns in Evaporating Liquids at Reduced Pressure and/or Microwave Irradiation
1990
This paper summarizes our recent experimental and theoretical work on the instabilities in liquids and at interfaces which form during evaporation at reduced pressure and/or microwave irradiation. We have observed a variety of patterns (Benard rolls, Marangoni waves, Hickman interface deformations) which depend on the value of the reduced pressure and the power of the incident beam.